Integrálna rovnica

Zo stránky testwiki
Prejsť na navigáciu Prejsť na vyhľadávanie

Integrálna rovnica je v matematike rovnica, v ktorej sa neznáma funkcia nachádza pod integrálom. Integrálne rovnice úzko súvisia s diferenciálnymi rovnicami a niektoré problémy môžu byť formulované oboma spôsobmi (napr. Maxwellove rovnice).

Za zakladateľa teórie integrálnych rovníc sa považuje Erik Ivar Fredholm, neskôr k nej významne prispel Vito Volterra.

Klasifikácia integrálnych rovníc

Integrálne rovnice možno rozdeliť na dve základné triedy: Fredholmove integrálne rovnice a Volterrove integrálne rovnice. Pri Fredholmových rovniciach má interval integrácie konštantné hranice, pri Volterrových rovniciach je jedna z hraníc funkciou premennej x.

Ďalšie delenie je na rovnice prvého a druhého druhu. V rovniciach prvého druhu sa neznáma funkcia nachádza len pod integrálom, v rovniciach druhého druhu sa nachádza pod integrálom aj mimo integrálu.

Fredholmove rovnice prvého druhu

Najzákladnejším typom integrálnych rovníc sú Fredholmove rovnice prvého druhu. Sú to integrálne rovnice tvaru

f(x)=abK(x,t)φ(t)dt,

kde φ je neznáma funkcia, f je známa funkcia a K je ďalšia funkcia o dvoch premenných, často nazývaná aj jadrová funkcia. Rozsah integrácie má konštantné hranice.

Fredholmove rovnice druhého druhu

Fredholmove rovnice druhého druhu sú rovnice s konštantným rozsahom integrácie a s neznámou funkciou nachádzajúcou sa ako v integrande, tak aj mimo neho. Sú to integrálne rovnice tvaru

φ(x)=f(x)+λabK(x,t)φ(t)dt.

Číslo λ je neznámy parameter, ktorý zohráva rovnakú úlohu ako vlastné číslo v lineárnej algebre. Význam ostatných symbolov je rovnaký, ako pri rovniciach prvého druhu.

Volterrove rovnice prvého druhu

Volterrove rovnice prvého druhu sú zovšeobecnením Fredholmových rovníc prvého druhu, v ktorom je jedna z hraníc integračného rozsahu funkciou premennej x. Volterrove rovnice prvého druhu majú tvar:

f(x)=axK(x,t)φ(t)dt.

Volterrove rovnice druhého druhu

Volterrove rovnice druhého druhu sú zovšeobecnením Fredholmových rovníc druhého druhu. Jedna z hraníc integračného rozsahu je funkciou premennej x. Rovnice tohto typu majú tvar:

φ(x)=f(x)+λaxK(x,t)φ(t)dt.

Pozri aj


Zdroj

Šablóna:Preklad