Seibergov–Wittenov invariant
Seibergove-Wittenove invarianty sú invarianty kompaktnej 4-rozmanitosti zavedené Edwardom Wittenom (pozri Šablóna:Harvbz), používajúce Seiberg-Wittenovu teóriu skúmanú Seibergom a Wittenom (Šablóna:Harvbz, Šablóna:Harvbz) počas ich skúmania Seibergovej-Wittenovej kalibračnej teórie.
Seibergove-Wittenove invarianty sú podobné Donaldsonovým invariantom a možno ich použiť na dokázanie podobných (no niekedy o niečo silnejších) výsledkov ohľadom hladkých 4-rozmanitostí. Po technickej stránke sa s nimi narába oveľa ľahšie ako s Donaldsonovými invariantmi; napríklad, moduli priestory riešení Seibergových-Wittenových rovníc majú tendenciu ku kompaktnosti, takže sa možno vyhnúť vážnym problémom, ktoré súvisia s kompaktifikáciou moduli priestorov Donaldsonovej teórie.
Detailný opis Seibergových-Wittenových invariantov pozri v Šablóna:Harv, Šablóna:Harv, Šablóna:Harv, Šablóna:Harv, Šablóna:Harv. O vzťahoch k sympletickej rozmanitosti a Gromovovým-Wittenovým invariantom pozri Šablóna:Harv. O ranej histórii pozri Šablóna:Harv.
Štruktúry spin c
Seiberg-Wittenove rovnice závisia na výbere komplexnej spinovej štruktúry, spinu c, na 4-rozmanitosti M. V 4 dimenziách je skupina spinc
- (U(1)×Spin(4))/(Z/2Z),
a je z nej homomorfizmus do SO(4). Štruktúra spinc na M je výťah prirodzenej SO(4) štruktúry tangentového zhluku (za predpokladu Riemannianovej metriky a orientácie) k skupine spin c. Každá hladká kompaktná 4-rozmanitosť M má štruktúry typu spin c ( hoci väčšina nemá spinové štruktúry.
Seiberg-Witten rovnice
Stanovte hladkú kompaktnú 4-rozmanitosť M, vyberte štruktúru spinc s na M a napíšte W+, W− pre asociované spinorové zhluky a L pre determinujúci líniový zhluk. Napíšte φ pre samoduálne spinorové pole (sekcia W+) a A pre U(1) pripojenie na L. Seiberg-Wittenove rovnice pre for (φ,A) sú
kde DA je Diracov operátor A, FA je zakrivenie 2-formy A, a FA+ je jej samoduálna častica a σ je umocnená mapa od W+ na imaginárne samoduálne 2-formy a je reálne samoduálna dvojforma, často reprezentovaná ako nula alebo harmonická. Riešenie (φ,A) pre Seiberg-Wittenove rovnice sa nazýva monopoly, keďže tieto rovnice sú rovnice poľa bezváhových magnetických monopolov na rozmanitosti M.
The moduli priestor riešení
Priestor riešení je v réžii kalibračnej skupiny a kvocient pri tejto akcii sa nazýva moduli priestor monopolov.
Moduli priestor je obvykle rozmanitosť. Riešenia sa nazýva redukovateľné, ak je fixované nejakým netriviálnym elementom kalibračnej skupiny, ktorý je ekvivalentný k . Nevyhnutnou a dostatočnou podmienkou pre redukovateľné riešenia pre metriku na M a samoduálne 2-formy je, že samoduálna časť harmonického zástupcu kohomologickej triedy určujúceho líniového zhluku je ekvivalentná harmonickej časti . Moduli priestor je rozmanitosť s výnimkou u redukovateľných monopolov. Takže ak b2+(M)≥1, potom moduli priestor je (pravdepodobne prázdna) rozmanitosť pre všeobecné metriky. Navyše, všetky komponenty majú rozmer
Moduli priestor je prázdny pre všetky s výnimkou konečného počtu spinuc štruktúr s, a je vždy kompaktný.
O rozmanitosti M sa hovorí, že je jednoduchého typu, ak je moduli priestor konečný pre všetky s. Zbiehavosť jednoduchého typu udáva, že ak M je jednoducho pripojené a b2+(M)≥2, potom je moduli priestor konečný. Toto platí pre sympletické rozmanitosti. Ak b2+(M)=1, potom existujú príklady rozmanitostí s moduli priestormi arbitrárne vysokých dimenzií.
Seiberg-Wittenove invarianty
Seiberg-Witten invarianty sa najľahšie definujú pre rozmanitosti M jednoduchého typu. V tomto prípade je invariantom mapa spinuc štruktúr s na Z, priberajúc sk počtu elementov moduli priestoru počítaných so znakmi.
Ak má rozmanitosť M metriku pozitívnej skalárnej zakrivenosti a b2+(M)≥2, potom všetky Seiberg-Wittenove invarianty M miznú.
Ak je rozmanitosť M jednoducho pripojená a sympletická a b2+(M)≥2, potom má spinc štruktúru s, na ktorej je Seiberg-Wittenov invariant 1. Podstatné je, že nemôže byť rozdelený ako pripojená suma rozmanitostí s b2+≥1.