Manóza

Zo stránky testwiki
Verzia z 13:22, 27. august 2023, ktorú vytvoril imported>KormiSKbot (Nahrada uvodzoviek)
(rozdiel) ← Staršia verzia | Aktuálna úprava (rozdiel) | Novšia verzia → (rozdiel)
Prejsť na navigáciu Prejsť na vyhľadávanie

Šablóna:Infobox Chemická zlúčenina Manóza,[1] skratka Man,[2] je monosacharid, ktorý má šesť atómov uhlíka a aldehydovú skupinu, teda aldohexóza. Je to C2 epimér glukózy. Manóza je dôležitá v ľudskom metabolizme, hlavne v glykozylácii niektorých bielkovín. Niektoré vrodené poruchy glykozylácie sú spojené s mutáciami enzýmov, ktoré sa účastnia metabolizmu manózy.[3]

Manóza nie je esenciálna živina. V ľudskom tele sa tvorí z glukózy alebo sa premieňa na glukózu. Manóza poskytuje energiu 2-5 kcal/g. Čiastočne sa vylučuje močom.

Štruktúra a konfigurácia

Manóza sa bežne vyskytuje v dvoch druhoch cyklickej formy, a to ako pyranóza (šesťuhlíkový cyklus) alebo furanóza (päťuhlíkový cyklus). Každá z týchto podôb potom existuje v dvoch podobe dvoch anomérov podľa polohy hydroxylovej skupiny na anomérnom uhlíku. Celkovo teda existujú štyri rôzne cyklické formy, v ktorých sa manóza môže vyskytovať, a takisto môže existovať v lineárnej podobe. Manóza podlieha rýchlej izomerizácii, pri ktorej sa premieňa z jednej formy na druhú.Šablóna:Bez citácie Manóza sa v prírode bežne nachádza v D konfigurácii.

Izoméry D-manóza (Haworthova projekcia) Percentuálny pomer týchto foriem

α-D-Manofuranóza

β-D-Manofuranóza

α-D-Manopyranóza
67%

β-D-Manopyranóza
33%

Manóza sa od glukózy líši inverznou konfiguráciou na uhlíku C2, je to teda C2 epimér glukózy. Manóza sa v roztoku nachádza v 4C1 konformácii. Táto malá zmena vedie k drasticky odlišnej biochémii medzi týmito dvoma hexózami. Táto zmena má podobné účinky i na ostatné aldohexózy.Šablóna:Bez citácie

Metabolizmus

Metabolizmus manózy u ľudí.

Predpokladá sa, že manóza využívaná v glykozylácii je odvodená od glukózy, avšak v kultúre hepatómových buniek (rakovinových buniek z pečene) pochádza väčšina manózy v biosyntéze glykoproteínov z extracelulárnej manózy, nie glukózy.[4] Mnoho glykoproteínov tvorených v pečeni sa vylučuje do krvi, takže takže sa manóza prijatá z potravy šíri do celého tela.[5]

Manóza sa nachádza v mnohých glykokonjugátoch vrátane N-viazaných glykozylovaných bielkovín. C-Manozylácia je takisto bežná.[6]

Trávenie mnohých polysacharidov a glykoproteínov produkuje manózu, ktorá je fosforylovaná hexokinázou, čím sa vzniká manóza-6-fosfát. Manóza-6-fosfát sa potom premieňa na fruktóza-6-fosfát (F6P) pôsobením fosfomanózaizomerázy.[7] F6P potom vstupuje do glykolytickej dráhy a je premieňaný na glukóza-6-fosfát v hepatocytoch, čo jej umožňuje vstup do glukoneogenézy.

Manóza je hlavným monosacharidom v N-viazanej glykozylácie, čo je posttranslačná úprava bielkovín. Začína presunom Glc3Man9GlcNAc2 na práve syntetizovaný glykoproteín v endoplazmatickom retikule. Glukóza sa hydrolyzuje na plne poskladanej bielkovine a manózové skupiny sú hydrolyzované manozidázami v endoplazmatickom retikule a Goligho aparáte. Hotové glykoproteíny typicky obsahujú tri manózové jednotky, ktoré sú schované ďalšími úpravami pomocou GlcNAc, galaktózy a kyseliny sialovej. To je dôležité, pretože prirodzený imunitný systém cicavcov je stavaný tak, aby rozlišoval vystavené manózové jednotky, pretože na povrchu kvasiniek sú často vystavené manózové jednotky v podobe manánov. Vírus HIV má značné množstvo manózových jednotiek kvôli tesnej blízkosti glykánov vo virálnom spikeu.[8][9] Tieto manózové jednotky sú cieľom pre protilátky.[10]

Biotechnológie

Rekombinantné bielkoviny tvorené v kvasinkách môžu byť podrobené adícii manózy iným spôsobom, než u cicavčích buniek.[11] Tento rozdiel u rekombinantných bielkovín spôsobený expresiou v kvasinkách a nie v cicavčích organizmoch môže ovplyvniť účinnosť vakcín.Šablóna:Bez citácie

Tvorba a použitie

Manózu je možné získať oxidáciou manitolu.[12] Takisto je možné ju získať Lobry-de Bruyn-van Ekensteinovou premenou.[13][14]

Manóza (respektíve D-manóza) sa používa ako doplnok stravy na prevenciu opakovaných infekcií močovej sústavy.[15]

Etymológia

Základom slov „manóza“ a „manitol“ je manna, ktorú Biblia popisuje ako pokrm zoslaný izraelskému ľudu pri jeho ceste v púšti.[16] Niektoré stromy a kry produkujú látku zvanú manna, napríklad Fraxinus ornus, z ktorého bol prvýkrát izolovaný manitol.[17]

Manóza PTS permeáza

Manóza XYZ permeázový komplex. Vstup PEP umožňuje presun vysokoenergetického fosfátu, ktorý sa presúva transportérovým systémom a nakoniec napomáha vstupu manózy (v tomto prípade, inak by to bola akákoľvek hexóza) a končí tvorbou manóza-6-fosfátu.

Súbor:MannosePTS.ogv PEP-dependentný cukor transportný fosfotransferázový systém prenáša a zároveň fosforyluje svoje substráty. Manóza XYZ permeáza je členom tejto rodiny enzýmov a túto zvláštnu metódu používajú baktérie na príjem cukrov, v prípade manóza XYZ hlavne exogénnych hexóz, na presun fosfátových esterov do bunkovej cytoplazmy pri príprave na ďalšie spracovanie, primárne pomocou glykolýzy.[18] MANXYZ transpotérový komplex sa takisto účastní infekcie E. coli bakteriofágom lambda, pričom podjednotky ManY a ManZ sú dostatočné pre infekciu fágom lambda.[19] MANXYZ obsahuje štyri domény v troch polypeptidových reťazcoch, ManX, ManY a ManZ. Podjednotka ManX tvorí homodimér, ktorý je lokalizovaný na cytoplazmatickej strane membrány. ManX obsahuje dve domény, IIA a IIB, spojené „kĺbovým“ peptidom a každá doména obsahuje fosforylačné miesto a prenos fosfátovej skupiny prebieha medzi dvoma podjednotkami.[20] ManX môže byť viazaná na membránu, ale nemusí.[19] ManY a ManZ podjednotky sú hydrofóbne integrálne proteíny so šiestimi a jedným transmembránovými alfa helixmi.[21][22][23] Fosfátová skupiny z PEP sa prenáša na importovaný cukor pomocou Enzýmu 1 a potom na ManX, ManY a ManZ podjednotky ManXYZ transportérového komplexu, ktorý fosforyluje prichádzajúcu hexózu, čím vzniká hexóza-6-fosfát.


Referencie

Šablóna:Referencie

Zdroj

Šablóna:Preklad

Šablóna:Sacharidy