Portál:Matematika/Odporúčaný článok/40 2011

Zo stránky testwiki
Verzia z 17:30, 24. september 2012, ktorú vytvoril imported>Sudo77(new) (Sudo77(new) premiestnil stránku Šablóna:Matematika/Odporúčaný článok/40 2011 na Portál:Matematika/Odporúčaný článok/40 2011: Portál:)
(rozdiel) ← Staršia verzia | Aktuálna úprava (rozdiel) | Novšia verzia → (rozdiel)
Prejsť na navigáciu Prejsť na vyhľadávanie

Komplexné čísla sú zovšeobecnením pojmu reálneho čísla. V obore reálnych čísel nemajú všetky polynomiálne rovnice riešenie. Ak sa číslo i definuje ako riešenie rovnice x2=1, potom všetky polynomiálne (algebrické) rovnice riešenie mať budú.

Reálne čísla

Reálne čísla sa nachádzajú v jednom rade usporiadané podľa veľkosti. Tento rad reálnych čísel sa nazýva číselná os. Číselná os má rozmedzie od mínus nekonečna až po plus nekonečno. Túto os je možné predstaviť si ako priamku, ktorá leží v rovine. Logicky tak vznikne možnosť, že aj v iných bodoch roviny okrem bodov tejto priamky je možné nájsť nejaké čísla.

Imaginárne čísla

V iných miestach roviny sa nachádzajú čísla, ktoré nazývame imaginárne čísla. Spolu so všetkými reálnymi číslami tvoria množinu všetkých komplexných čísel. Definoval ich nemecký matematik Gauss a podľa neho sa aj táto rovina čísel pomenovala Gaussova rovina. Túto rovinu rozdeľujú dve osi — už spomínaná číselná os, ktorá sa v grafoch stotožňuje s osou x (reálna os) a na ňu kolmú os y (imaginárna os). Obe tieto osi sa pretínajú v bode [0;0].


Celý článok...